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Abstract: A general procedure for analyzing correlated wave functions is explicited and applied to the double bridge of diborane. 
The procedure consists of four steps. First, a complete-active-space multiconfigurational SCF (CASSCF) calculation provides 
optimized valence molecular orbitals and treats the electronic correlation internal to the space associated with the given chemical 
group. Then, these orbitals are localized into a minimal set of molecularly adapted atomic orbitals called nearly atomic molecular 
orbitals (NAMOs). Next, these orbitals are used to build a basis set of orthogonal valence-bond (OVB) determinants on 
which the CASSCF wave function is reexpressed, weighting the various distributions of the active electrons in these local cells. 
The information is lastly reduced by further processing the OVB expansion to figure out the electron populations and their 
fluctuations within one NAMO or a subset of NAMOs. To measure the extent of interaction between given orbitals, an index 
is proposed that is related to the covalent organization residual two-electron probability (CORP). The whole method is proved 
to avoid the shortcomings of basis set dependence. For B2H6, the NAMOs are hydrogen-centered orbitals and B-H directed 
boron hybrids. The OVB expansion exhibits a clear hierarchy of situations, reflecting a compromise between the separation 
of the two bridges (91% probability for up/down 2e/2e partitioning) and the tendency to maintain the neutrality of the atoms. 
AU indexes indicate that the B-H interactions definitely prevail over the B-B ones, although the latter are not negligible. This 
is further confirmed by a direct estimate of charge-transfer interactions in the OVB-CI matrix. In a way, each three-center 
two-electron bridge in diborane is roughly halfway between an allyl-like cation and a cyclopropenyl-like cation. 
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Among the problems related to the interactions between atoms 
within a molecular arrangement, one which has received much 
attention is that of the through-space/through-bond interactions, 
especially in four-membered ring systems.1"8 A common measure 
of the extent of direct binding between two atoms is the classical 
Mulliken overlap population. Mulliken analysis happens to be 
a simple and convenient index in many studies, but it is known 
to suffer some criticisms, especially when large basis sets are used. 
Several attempts have been made to get rid of the drawbacks, 
either by improving space partitioning9"15 or by using other criteria 
such as those based on the properties of the gradient vector field.16 

The two electron-deficient bridges in diborane, B2H6, and in 
its heavier analogues are a typical illustration of the dilemma of 
through-space/through-bond binding choice.17 According to some 
descriptions,1* supported by the reasonably short BB bond (1.76 
A) , " there is significant direct B-B interaction, so that one can 
write a bar between these two atoms, la. In other analyses," 
including some classical Mulliken ones, such direct interaction 
is negligible so that the construction holds together only through 
the B-H-B bridges, lb. 

The double bridge of diborane has been extensively explored 
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through molecular orbital descriptions.20"25 The classical orbital 
picture consists of six canonical molecular orbitals (MOs) spread 
out over the two bridges, with two occupied levels. A more local 
equivalent description in terms of a couple of three-center two-
electron bonds may be obtained by localizing the two occupied 
MOs.26"29 Such localized bonds are defined in two quasi-exclusive 
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regions and may be considered as almost independent. Each of 
them involves a Is atomic orbital (AO) on the hydrogen sur­
rounded by two hybrid atomic orbitals located on the two boron 
atoms, Ic. In this picture, the BB through-space interaction may 
be considered as negligible. 

The good localizability of the SCF wave function is not suf­
ficient to discard significant through-space interaction since 
localizability is compatible with two pictures of the bridge: an 
allylic cationlike system, 2, with two electrons in three orbitals, 
linked by 1-2 and 2-3 bindings, and a cyclopropenyl cation (or 
H3

+)-like aromatic system, 3, involving almost equivalent 1-2 or 
2 2 

2 3 

2-3(/3) and 1-3(/J') interactions.17,30 Moreover, the definition 
of localized doubly occupied three-center orbitals is based on the 
use of a single determinantal wave function. The distribution of 
the four electrons in the bridges is certainly significantly correlated, 
and the inclusion of electronic correlation—at least within the 
valence shell—seems highly desirable in order to check the validity 
of the above-mentioned picture. This can be done by considering 
the best valence wave function, namely, the multiconfigurational 
valence complete-active-space self-consistent-field (CASSCF) 
wave function. Such a wave function variational^ defines an 
optimal valence space, no longer taken from the free atoms but 
adapted to the molecular field in a self-consistent manner. It 
further includes all the correlation effects within the valence shell 
since all excited determinants (of correct symmetry) built from 
the valence MOs are introduced in the multiconfigurational ex­
pansion. This wave function accurately accounts for fragment 
dissociation processes and tends to become a new standard 
zero-order description in ab initio molecular calculations.31 In 
the study of the electron-deficient bridge bond, attention may be 
focused on the bridges only. The extracyclic XH bonds are well 
localizable, and one may neglect their charge fluctuation, therefore 
assuming their electrons and bond orbitals to be inactive in the 
CASSCF process relevant to the ring. In other words, it is 
sufficient to perform a regional study, concentrated on the group 
or chemical function we are interested in. This restriction leads, 
in the present case, to an active space of six active MOs, localized 
on the bridges and occupied by four active electrons. 

The present work proposes to transform that wave function 
according to a suggestion of Ruedenberg et al.,32 by applying a 
localization of the valence space provided by the active MOs of 
the CASSCF procedure. This space has the same size and 
qualitative features as a minimal basis set, but it is molecularly 
adapted and derived from the extended basis sets required for any 
reliable SCF or CI description. The localizing unitary transform 
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(29) Perkins, P. G.; Stewart, J. J. P. J. Chem. Soc. Faraday Trans. 2 1982, 

78, 285. 
(30) (a) Kutzelnigg, W. Einfuhrung in die Theoretische Chemie; Verlag 

Chemie: Weinheim, 1978; Vol. 2, p 338. (b) Albright, T. A.; Burden, J. K.; 
Whangbo, M. H. OWw/ Interactions in Chemistry; Wiley: New York, 1985; 
p 156. 

(31) (a) If the CASSCF step becomes too expensive (when larger sub­
systems are considered), other procedures may be used to define a valence 
space. One may for instance perform pairwise MCSCF calculations, which 
provide bonding and antibonding valence orbitals, or use the projected atomic 
orbitals316 or hybridized atomic orbitals31' strategies. The resulting valence 
monoelectronic subspaces are almost identical with the optimal one given by 
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and the corresponding CASCI wave function would replace the CASSCF one. 
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of the active MOs proposed by Boys33 leaves the active space and 
the CASSCF wave function invariant but provides a set of at-
omiclike equivalent MOs, which may be seen as orthogonal atomic 
orbitals spanning the optimal valence space. We will name these 
orbitals nearly atomic molecular orbitals (NAMOs). They may 
be used to build determinants that are similar to the usual va­
lence-bond (VB) determinants. Each of them corresponds to a 
certain spread of m active electrons into n active orbitals (in the 
present case, 4 electrons in 6 orbitals). These VB-like determinants 
define an orthogonal basis that spans the same space as the 
symmetry-adapted determinants in the CASSCF wave function. 
Rewriting this wave function as a linear combination of the VB-like 
determinants makes its reading possible through an orthogonal 
valence-bond (OVB) transcription. This valence CASSCF wave 
function therefore builds a bridge between the VB and the MO-CI 
approaches. Such a strategy has already been embodied in pre­
vious studies.34,35 We will define it here in a more general and 
systematic way and gauge all its potentialities. 

In section II, this wave function will be analyzed so as to 
establish the electronic order prevailing in the double-bridge region. 
The analysis first concerns the hierarchy of the OVB coefficients, 
which clearly reveals the combined effect of two rules, namely, 
a tendency to keep one a(3 electron pair per bridge and a tendency 
to maintain the neutrality of the atoms. In section III, we will 
establish that the two-bridge separation is by far the best 2/2 
partition of the electrons. Reduced information regarding the 
electronic population will next be considered by looking at the 
one-particle density matrix, i.e., atomic charges and bond orders. 
When expressed in terms of NAMOs, these indexes become 
meaningful (section III) and free of the usual basis set dependence 
(section VI). However they are of no help in giving an insight 
into the existence of a binding interaction between atoms. In order 
to obtain such information, we will consider in section IV the 
elements of the two-electron density matrix, which are related to 
the probability of finding two electrons in a subset of NAMOs, 
and we will propose a covalent-bonding index. In the OVB ap­
proach, the existence of strong one-electron transfers between two 
NAMOs may be easily traced by looking directly at the OVB-CI 
matrix; this also provides a measure of through-bond and 
through-space interactions (section V). Lastly, the Conclusion 
will address the advantages of the proposed procedure to rationally 
exploit the /!-electronic wave function. In a forthcoming paper, 
the same tools that are applied here to a scrutiny of B2H6 will 
be applied to a series of isoelectronic electron-deficient bridges.36 

H. Orthogonal Valence-Bond Reading of the Correlated Wave 
Function 

The ab initio calculations reported here use valence basis sets 
of standard double-f + polarization quality. For the sake of 
consistency with the subsequent study on analogues of diborane 
containing heavy atoms, the calculations are reduced to valence 
electrons by using effective core potentials. Computational details 
are given in the Appendix. The valence complete active space, 
restricted to the double-bridge region, necessarily concerns the 
classical set of six valence orbitals (a,, blu, b2g, b3u, ag, blu) and 
four electrons. The CASSCF procedure perfectly localizes the 
active orbitals in the bridge region, i.e., on bonds where the 
electronic correlation is larger than in the strong extracyclic XH 
bonds. The localization will appear clearly from the shape of the 
equivalent orbitals obtained in the next step. 

A. Nearly Atomic Molecular Orbitals (NAMOs). Such orbitals 
are obtained by applying Boys' unitary transformation32 to the 
six active MOs. This transformation minimizes the fluctuation 
of the position of the electrons around their centroids. Let us call 

(33) Foster, J. M.; Boys, S. F. Rev. Mod. Phys. I960, 32, 300. 
(34) (a) Trinquier, G.; Malrieu, J. P. In The Chemistry of Double-Bonded 

Functional Groups; Patai, S., Ed.; Wiley Interscience: New York, 1989; 
Supplement A, Vol. 2. (b) Trinquier, G.; Malrieu, J. P. J. Phys. Chem. 1990, 
94, 6184. (c) Clotet, A.; Daudey, J. P.; Malrieu, J. P.; Rubio, J.; Spiegelmann, 
F. Chem. Phys. 1990, 147, 293. 

(35) Trinquier, G. J. Am. Chem. Soc. 1991, 113, 144. 
(36) Trinquier, G.; Malrieu, J. P. J. Am. Chem. Soc, in press. 
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Table I. OVB Expansion of the CASSCF Wave Function in 
Diborane" 

Figure 1. Contour lines for the two types of NAMOs in the bridge region 
of diborane: top, boron-centered BH-oriented hybrid; bottom, hydro­
gen-centered orbital. The lines start from |*| = 0.35 (outer lines) and 
increase inward by regular steps of Al^l = 0.05. 

[If)1] the six active orbitals. They are changed into six local orbitals 
JX̂ I such that 

Ix7I = IAvA 

with U being a unitary transform that keeps the subspace unvariant 
and keeps the orthonormalization, i.e., rotates the basis set of the 
valence space, and such that 

H (Xj\(r - r0j)
2\Xj) - minimum 

./"1.6 

with T0J being the centroid associated with the Xj MO: 

r0J = (Xj\r\Xj) 

The more localized the orbitals, the smaller the fluctuation of the 
distance of their electrons to their centroids. This criterion is 
usually used after an SCF calculation to obtain equivalent occupied 
orbitals localized on bonds and lone pairs. Here, the process is 
applied to the whole active space of the MCSCF orbitals and is 
expected to lead to the NAMOs, which are even more localized 
since the whole valence space is transformed. Six NAMOs are 
obtained. Four of them, labeled b,, b'i, b2, and b'2, are hybrid 
orbitals centered on the boron atoms and directed toward the 
hydrogen atoms, and two of them, labeled h and h', are ls-type 
orbitals centered on the hydrogen atoms, 4. Their amplitudes are 
plotted in Figure 1. Despite their orthogonality, which introduces 
nodal surfaces and small tails, the atomic character is well kept. 

O 

O 

This picture in terms of hybrids directed toward the hydrogen 
atoms is imposed by Boys' criterion, in the same way as banana 
bonds are obtained in ethylene. One may wonder whether this 
criterion could artificially favor the traditional view in terms of 
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n 
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n 
n 
n 
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n 
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n 
i 
ii 
i 
i 
ii 
i 
ii 
ii 

B-H-B-H' 

0 0 0 0 
- 0 + 0 
- + 0 0 
0 - + 0 
- + - + 
0 + 0 -
+ - + -
0 + - 0 

2- + + 0 
2- + 0 + 
0 0 0 0 
- - + + 
0 0 + -
0 + - 0 
- + - + 
- 0 + 0 
0 + 0 -
- + + -
- + 0 0 

3- + + + 
2- + + 0 
0 + 0 -

2- + 0 + 
0 + - 0 
- + + -
- + - + 
- + - + 
- + 0 0 

% contributions^ 

CASSCF 

7.87 
6.49 
4.92 
3.61 
3.27 
2.65 
1.62 
1.60 
1.06 
0.84 
0.81 
0.73 
0.44 
0.37 
0.34 
0.32 
0.21 
0.20 
0.16 
0.14 
0.13 
0.01 
0.01 
0.01 
0.01 
0.00 
0.00 
0.00 

random 
distribution 

weighted 

3.41 
3.41 
2.04 
1.90 
1.22 
1.14 
1.59 
0.68 
0.68 
0.41 
3.41 
0.57 
1.90 
2.04 
0.20 
1.14 
1.14 
1.14 
0.68 
0.20 
0.68 
1.14 
0.41 
0.68 
0.57 
0.41 
0.20 
0.68 

pure 

2.67 
2.67 
2.67 
0.89 
2.67 
0.89 
0.44 
0.89 
0.89 
0.89 
2.67 
0.44 
0.89 
2.67 
0.44 
0.89 
0.89 
0.89 
0.89 
0.44 
0.89 
0.89 
0.89 
0.89 
0.44 
0.89 
0.44 
0.89 

"The configurations are explicited in Chart I. * Total number of 
determinants. 'Space degeneracy. dUp/down partitioning: n, neutral; 
i, ionic; ii, di-ionic. 'Atom ionicity. !Each contribution must be 
weighted by its space degeneracy for obtaining a total sum of 100%. 

three-orbital two-electron bridges. An equivalent basis for the 
valence active space may be obtained by keeping the two hy­
drogen-centered NAMOs unchanged and by combining the b and 
b' hybrids into n- and p-type NAMOs, 5, defined as 

"i = ~7:(bi + bV 
1 

P1 = —=(b, 
V2 

b'i) 

The possible existence of a direct BB bonding interaction should 
be examined in that basis set too, by scrutining the population 
in the n h n2 set. However, most of the analysis that follows will 
use the b-hybrid basis set 4 since it proved to be the better partition 
according to several criteria. 

B. OVB Decomposition and Hierarchy. The CASSCF wave 
function is now reexpressed in an OVB language. The four 
electrons may be spread out among the six NAMOs in (C\)2 = 
225 different manners, generating 225 determinants. These can 
be gathered into 28 categories, corresponding to different types 
of nonequivalent space parts. They are depicted in Chart I and 
listed in Table I, according to their decreasing weight in the 
CASSCF function. The hierarchy of the OVB weights is easily 
understood if one recognizes the following trends. 

(1) The tendancy of each bridge to keep two electrons. Actually 
the 10 largest weights concern structures that satisfy the 2/2 
up/down partitioning of the electrons. The three other VB 
structures which satisfy that partition (<i>12, $15, $20) have neg­
ligible weights because they strongly violate the second trend. 

(2) The preference for atomic neutrality. The largest coefficient 
<t>! satisfies this neutrality, while the following ones are singly ionic. 
Notice that the largest component violating the 2/2 up/down 
partitioning, * M , is again neutral with respect to the atoms. 

(3) The preference for the electron spread on the atoms. This 
rule only concerns the ionic VB structures with B" atoms. The 
two electrons on B" occupy two different hybrids in *2 , *3, and 
<£5. The first configuration with double occupancy of a hybrid, 
$8, has a much smaller weight. The rules 2 and 3 have been well 
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Table II. Calculated Probabilities of Having Two Electrons in Given 
Subsets of Orbitals" 

orbital sets 

Ib1, h, b2| 
Ib1, b'„ h) 
In,, n2 | 

Ib1, h| 
Ib1, b2j 
Ib1, b' , | 
|h, h'| 
Ib1, h'| 

Ip1, h} 
In1, h) 
IPi, P:l 

CASSCF 

90.9 
47.0 
49.8 

45.6 
29.7 
27.0 
41.6 
35.0 

34.9 
41.6 
16.4 

random distribution 

weighted 

44.7 
44.7 
37.4 

37.2 
27.5 
27.5 
43.2 
37.2 

32.9 
41.1 
16.7 

pure 

44.0 
44.0 
33.8 

33.8 
33.8 
33.8 
33.8 
33.8 

33.8 
33.8 
33.8 

" In percent. See 4 and 5 for orbital labeling. 

established on other problems, and they apply here under the 
requirement of rule 1, i.e., the electron partitioning into two 
bridges. 

Notice that the two bridges are not independent. If they were 
so, one would have the same weight for structures ^1 and $2, *8 
and $9, or $15 and *20. The inequalities $1 > <f>2, *8 •*• $9, an<i 
*i5 -* $20 reflect the correlation between the movement of the 
electrons in the two bridges: When they move leftward in the 
upper bridge, the others move rightward in the lower bridge in 
order to minimize the instantaneous electrostatic energy through 
a coupling of two dipoles of opposite directions. 

C. Comparison with Random Distributions. The electronic 
ordering may be appreciated by comparing our calculated coef­
ficients with the corresponding probabilities obtained by spreading 
out four electrons (2« and 2/3, subject to the exclusion principle) 
over six boxes. These boxes may be of equal size, giving a pure 
random distribution, or may be of various sizes in order to re­
produce the calculated atomic charges and giving a weighted 
random distribution. Details for the computation of these dis­
tributions are given in the Appendix. The random distributions 
are listed in Table I, right. Going from the random distributions 
to the CASSCF one, the wave function concentrates in a reduced 
number of determinants. The only six configurations $]-$& thus 
contribute more than 71% to the function.37 The random dis­
tributions will be useful to see the occurrence of unexpected large 
probabilities. 

III. Search for the Best 2+2 Partition of the Electrons 
For doing so, let us consider some possible partitionings of our 

six NAMOs into two subsets, each one bearing two electrons—and 
only two—and see how large are the corresponding probabilities. 
This is done in Table II, top. First of all, to confirm the classical 
view of the doubly bridged chemical system as made of two bonds, 
one for each bridge, one expects a high probability to find two 
electrons in the subset |bb h, b2). For symmetry reasons, the mean 
population in this subset is necessarily 2, but this does not de­
termine the probability for two electrons in the subset. Such 
probability is calculated to be actually very high at 91%, while 
the probability to find 1 or 3 electrons in each bridge is only 4.5% 
and that to find 0 or 4 electrons is smaller than 0.5%. If the 
electrons were randomly distributed, the corresponding proba­
bilities would be 44%, 24%, and 4%, respectively. 

Next, let us look at the probability to find two electrons in each 
H2B-H fragment, i.e., in the subset {b,, b'i, h). This probability 

(37) In other words, moving from the pure random distribution to the 
weighted random one and to the CASSCF one, there is more and more 
information. This can be figured out by calculating the entropies S associated 
with the distribution of probabilities within the complete sets of 225 spin-
orbital determinants 

S = -Lpi In Pi 
1 

For the pure random case, this value is straightforward: S = In 225 = 5.42. 
For the weighted random distribution, S is calculated at 5.32. For the 
CASSCF one, this value reduces to 4.58. 
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Table III. First-Order Density Matrix Elements 

electronic populations 

bond orders 

CASSCF 
function 

' wave 
in the 

basis of NAMOs 

<7h 

9b 

^ b , h 

^ b I b 2 

^ b 1 b ' 2 

^ b ,h' 

^ h h ' 

0.86 
0.57 

0.65 
0.56 
0.15 

-0.03 
-0.29 

SCF wave 
function in the 
basis of AOs" 

<?H 

^BH 
^BB 

^HH 

1.10 

0.20 
0.08 

-0.07 

"This is the classical Mulliken analysis. 

(47%) turns out to be very close to the pure random (44%) and 
weighted random (45%) expectations. The fragments do not 
persist in the bridge. A last partition will divide our space into 
a |n,, n2j subset making a a bond, and the complementary subset 
(p„ p2, h, h'j linking the two remaining electrons in a more complex 
way. The probability to find two—and only two—electrons in 
the Jn1, n2j subset (50%) is significantly larger than that associated 
to pure random (34%) or weighted random (37%) situations. 
However, it remains much lower than that obtained for the Jb1, 
h, b2|, jb',, h', b'2| partitioning (91%). Thus, the relevance of the 
traditional view of two bridges bearing two electrons each is 
confirmed at this level. This further justifies to focus the discussion 
on the partitioning into B-H oriented hybrids, 4, rather than that 
into B-B oriented hybrids, 5, although all our analyses have been 
carried out in the two OVB basis. 

IV. Bonding Character between Two Orbitals 
A. Charges and Bond Orders. The first-order density matrix 

may be expressed in various basis sets. One usually uses the atomic 
orbitals basis set in order to get an insight on the local features 
of the wave function. This procedure furnishes atomic charges 
and bond orders, through some rather arbitrary sharing of overlap 
populations. It keeps reasonable meaning when minimal basis 
sets are used but may become rather unreliable when large basis 
sets are involved. Since our NAMOs provide some kind of or­
thogonal molecularly adapted minimal basis set, one may express 
the first-order density matrix in terms of NAMOs. Their or­
thogonality avoids the sharing of overlap population, and one 
should fall on the simplest analysis as in the elementary Hiickel 
frame. 

Such charges and bond orders are listed in Table III, together 
with the SCF Mulliken indexes. The net charge on hydrogen is 
positive (+0.14), despite the electronegativity difference,38 and 
sounds reasonable for an electron-deficient system. This is in 
contrast with the Mulliken charge (-0.10). The off-diagonal 
elements are both large for the directional b-h NAMO pairs (0.65) 
and for the two b-b hybrids of the same bridge (0.56). The h-h' 
off-diagonal element is large and negative (-0.29). These values 
are somewhat larger then the Mulliken's bond indexes. At this 
stage, and if relying on the first-order density matrix, we would 
conclude that the B-H and B-B interactions are similar. 

B. Selected Bielectronic Probabilities. As mentioned in the 
Introduction, there are two limiting cases for a three-center 
two-electron problem, namely, the allyl cation situation, 6, and 
the cyclopropenyl cation situation, 7. In the former case, where 

6 7 

there is no 1-3 interaction, the simplest resonating valence-bond 

wave function would not consider any covalent bond between 1 
and 3 and therefore would exclude configurations like 8. Such 
exclusion from our OVB expansion for diborane would discart 
the determinants <*>3, #5, $6, and *10. In this case, the probability 
to find two electrons in a given bridge set Jb1, h, b2) falls from 91% 
to 59%, indicating that situation 8 occurs frequently in our 
molecule. 

O 

Turning back to a Hiickel picture, for 6 and 7, the corresponding 
wave functions write as 

*.u = 1(ViCb1 + b2) + h/y/1) I1ACb1 + b2) + h / V 2 } | 

ĉycl = Mb 1 + b2 + h)(b, + b2 + h)| 

The classical bond indexes defined as 

P = Y C C 
mfflocc 

^ b 1 = Vi = 0-50 

would give, for the allyl case 

This rather small difference between b]-h and bpb2, despite the 
lack of bond between the external atoms, is a clear illustration 
of the impossibility to rely on such indexes to assess the existence 
of a bond. 

In an uncorrected description, the situation 8 would occur with 
a probability of '/8(13%) in the allyl cation and a probability of 
2/9(22%) in the cyclopropenyl cation. From our OVB expansion 
in B2H6, the probability to find the configuration 8 in a given 
bridge is found to be 17%. This is halfway between the two 
limiting cases, and suggests some significant binding interaction 
between the two boron hybrids. 

From the OVB expansion, it is easy to calculate the probability 
to find two—and only two—electrons in any couple ;, j of NA-
MOs. The calculation is explicited in the Appendix, and the values 
are given in Table II. When comparing them to the corresponding 
pure random or weighted random probabilities, the strongest 
deviation concerns the Jb1, hj NAMO pair. The Jb1, b2j occurrence 
is nearly equal to the weighted random probability. For |h, h'j, 
the probability to find two electrons is high, but this essentially 
reflects the effect of the charges since it is almost identical with 
the weighted random probability. Using the differences 
(CASSCF-weighted random), these two-electron probabilities 
would lead to the following reasonable hierarchy of t-j interactions: 
b,-h, 8.4%; b,-b2, 2.2%; b,-b'2, -0.5%; h-h', -1.7%; b,-h', -2.1%. 
The same analysis may be performed in terms of the equivalent 
NAMOs jn, p, h). As can be seen in Table II, the probability to 
find two electrons in the subset In1, n2j of the two B-B directed 
NAMOs is high and, again, significantly larger (by 12%) than 
the corresponding weighted random probability. This result would 
support the existence of a rather strong B-B interaction. Notice 
however that there is only one such interaction instead of the four 
B-H interactions, so that the latter will prevail in fixing the 
electronic wave function. 

C. CORP: A Bielectronic Bond Index. In order to have a 
covalent bond between two orbitals i andy, the probability /1Jj' 
to find two electrons, and only two, in that subset must be as large 
as possible. But this is not sufficient. Let us consider for instance 

GX X 3 GX KD 
(38) The electronegativities for B and H are 2.0 and 2.1, respectively, in 

Pauling's scale and 2.0 and 2.2, respectively, in Allred and Rochow's scale. 10 
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a diradical where the orbitals /' andy, located far apart, are always 
occupied by one and only one electron, 9. The wave function 
associated to these electrons is 

* = — \i] + jl\ (1) 

and the probability PjV is 1 although there is obviously no bond 
at all between ;' a n d / In this case, the probabilities to find one 
electron in / or in j are equal to I: 

P(D = /KO= 1 

so that PjV is the simple product 

Pj? = W > (2) 
Oppositely, if one considers a system with a lone pair located in 
orbital i and a remote empty orbital j , as in 10, the wave function 
associated to this set is 

* = |i7| (3) 

and again the probability PjV is 1 although there is no bond 
between / and j . In that case, we have 

rt2) = PiO)=I 

so that PjV is the simple product 

pJ2) = pJ2)pj0) (4) 

A covalent bond, in its naive chemical meaning, requires to have 
both important diradicalar and ionic instantaneous distributions, 
i.e., an important charge fluctuation within the bond. In order 
to measure the existence and extent of a covalent bond between 
two orbitals, we propose to use the remainder obtained when the 
products such as in (2) and (4) are substracted from PJf. This 
index, which we shall call CORP, standing for covalent organi­
zation residual probability for two electrons, is thus defined as 

CORP = PJf - \P)"P)» + Pj2)P)0) + Pj0)P)2)\ (5) 

This quantity is the probability to find two electrons in the set 
\i,j\ diminished by the independent probabilities corresponding 
to purely neutral or purely ionic situations. Note that the global 
probability PjV is the sum of the probabilities to find neutral Pjj']) 

and ionic P>|"' and Pjj'2) situations in the ji, j \ subset: 

pj2) = pj.,) + pJ2,0, + pJ0,2) 

CORP is in general different from zero since usually 

pjl.l) * pJDpjD pj0,2) ^ pj0)pj2) 

This bielectronic index measures the occurrence of two electrons 
in a given set, which is not statistical but comes from the binding 
interaction. It is a dimensionless real number smaller than 1, 
which as the other probabilities, will be expressed in percent. The 
concept may be extended to a set of any number n of orbitals, 
and in its most general expression, the index is defined as 

C O R P = /*2> - I L / * 1 ^ n /f> + zpj2)npjo)\ 

Turning to two-orbital sets, let us see how it works in typical 
situations. 

For a pure diradical system, from expression 1 of the wave 
function, the following elements of (5) are obtained: 

pf) = pjO) = p(2) = p(2) = 0 

so that 

CORP = l - | l + 0 + 0) = 0 

Similarly, for a pure ionic bond, expression 3 leads to 

PfO) = pjO) = pJ2) = pj2) = 0 

p(2) = pjO) = [ 
P& = 1 

so that again 

CORP = 1 - (0 + 1 + 0| = 0 

The index therefore cancels for the situations 9 and 10 involving 
a pair of noninteracting orbitals. Let us now consider a more 
general homopolar simple bond. Its uncorrelated wave function 
writes as 

i = 1Md + M~j)\ 

which results in 

PjO = pjO = 2 ( y 2 ) 2 = y2 

PjO) = pjO) = pJ2) = pj2) = (./2)2 = lA 

Pf = 4C/2)
2 = 1 

The bielectronic bond index is therefore 

CORP = 1 - j ' / 2 X y2 + 2 X % X y4j = % = 63% 

The correlated wave function writes as 

4> - 1MHO + J?) + ntf + JJ)\ 
with X > ix and X2 + /i2 = 2. This results in 

C O R P = I - j + ^ = y 2 [ i + x 2 -%x"! 

The index is maximum for X = \i = 1 and decreases to zero when 
X —• V2 and /x -* 0, as expected since the correlation increases 
the diradical character of the bond. Since it vanishes for purely 
diradical or purely ionic wave functions, the index may be seen 
as reflecting the electronic derealization of a pair of electrons 
between the NAMOs i and j . At this step, a vocabulary remark 
is needed. In the VB terminology, the term covalent sometimes 
stands for neutral or diradical, by opposition to ionic. In traditional 
VB approach, however, owing to the nonorthogonality of the 
orbitals, the covalent forms incorporate part of the electronic 
fluctuation—therefore of the ionic forms. In GVB calculations, 
for instance, such fluctuation is properly taken into account by 
variationally optimizing the atomic orbitals, which are given tails 
on the neighboring atoms. In the present strategy, the use of 
probabilities prevents, of course, the use of nonorthogonal orbitals. 

Let us now apply this index to our NAMOs of diborane. This 
is done in Table IV. The CORP index is found to be much larger 
for |b,, h| than for |b„ b2) (11% vs 3%). The other CORP 
probabilities seem to be rather marginal. This index suggests some 
nonnegligible interaction between the boron hybrids of the same 
bridge. Going to the equivalent |n, p, hj representation, one 
actually finds a large bielectronic bond index (16%) between the 
two cr-type NAMOs of the boron atoms directed along the B-B 
bond. Comparing the values of the indexes for the CASSCF wave 
function with those for the weighted random distributions supports 
these trends. The index is increased by 5% for b,-h and only 0.4% 
for b r b 2 (see Table IV). Note that the CORP index for h-h' 
is decreased by as much as 6%, which would indicate that this 
index of 1.4% is not originated in H-H binding interactions. 

V. Direct Research of Electron-Transfer Integrals 
A. Reading the OVB-CI Matrix. One advantage of the use 

of a CASSCF wave function and of its transcription into a 
localized NAMO basis is the possible determination of the in-
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Table IV. Calculated Bielectronic CORP Indexes" 

orbital pairs 
Ib1. h| 
Ib1, b2| 
Ib1, b'2| 
Ib1, h'| 
Ih, h'| 

I'll, n2| 
IPi. P2I 
In1. h} 
Ip1, h) 

CASSCF 
10.8 
2.9 
0.2 
0.3 
1.4 

16.0 
-0.6 
4.4 
4.5 

random distribution 
weighted 

5.2 
2.5 
2.5 
5.2 
7.3 
5.5 
0.3 
6.7 
3.7 

pure 
4.1 
4.1 
41, 
4.1 
4.1 
4.1 
4.1 
4.1 
4.1 

' In percent. See relation 5 for the definition of the index and 4 and 
5 for orbital labeling. 

Table V. Mean Values for the Off-Diagonal Elements F1, of the 
OVB-CI Matrix (au) 

intrabridge interbridge 

b,-h 
b,-b, 

-0.29 
-0.17 

b,-b', 
b,-b'2 
b,-h' 
h-h' 

-O.09 
-0.17 
+0.01 
+0.05 

tensities of the interactions between the NAMOs. One may for 
instance calculate the off-diagonal elements of the Fock operator 
associated with the leading configuration * 0 of the symmetry-
adapted multiconfigurational expansion 

*o = |a?,bi| 

in the basis of the NAMOs: 

F,j = (i\F\j) 

F1J= (i\h + 2Jlt-K,, +2J2n-K3JJ) 

where h is the monoelectronic part of the Hamiltonian. One may 
also calculate the interaction between two OVB determinants <t>/ 
and $j, which only differ by one orbital, i.e., such that 

*, = a[a^} 

with o,+ and O1 being the creation and anihilation operators, re­
spectively. This relation simply means that */ is obtained from 
$j by replacing j , occupied in $,, by 1, which was empty in <f>y. 
Then the hopping integral (J -*• i) may be evaluated as 

We have checked that b'j is small with respect to F1, (by about 
1 order of magnitude) so that one gets directly from the OVB-CI 
matrix an estimate of the amplitude of the hopping integrals. As 
a measure of the invariance of these integrals, one may notice that, 
starting from the leading configuration $ b the b -*• h charge 
transfer leads to $4 with a matrix element of-0.30 au while the 
h -» b charge transfer leading to <f>8 has a matrix element of-0.28 
au. Similarly, the h -* b' charge transfers corresponding to Q1 

— * u or *, - • * | 9 have amplitudes around +0.01 au differing 
by less than 0.002 au. One may therefore consider that the 
amplitudes of the electron-transfer integrals between two NAMOs 
are weakly dependent of the instantaneous electronic environment. 

Examination of the elements of the OVB-CI matrix calculated 
for B2H6 provides an evaluation of the respective intensities of 
the B-H, B-B, and H-H interactions. The amplitudes corre­
sponding to the b-h, b-b, b-b' and h-h' interactions are listed 
in Table V, which shows that (1) the b-h interaction is the largest 
one; (2) the b-b interaction within the same bridge is rather 
important (about half of the preceding one); (3) the interbridge 
integral b-b' is as large as the intrabridge one b-b; (4) the integrals 
corresponding to the interbridge interactions b-h' and h-h' are 
positive and small. Turning to the |n, p, h) basis set, the transfer 
integral (n||F|n2) between the two NAMOs directed along the 
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B-B axis would be very large since it is the sum 

<n,|F|n2> = <b,|F|b2> + <b,|F|b'2> * -0.34 au 

This would plead again for a significant transannular interaction 
between the boron atoms. 

B. Back to a Hiickel Picture. It is tempting to build a purely 
monoelectronic matrix spanned by the NAMOs, by using as 
off-diagonal elements the mean Fn elements of Table V. The only 
lacking information, the diagonal energy difference between the 
b and h NAMOs, may be extracted from the energies of the singly 
ionic configurations $4 and $8. The corresponding energy dif­
ference is 0.045 au in favor of h, in agreement with the electro­
negativities. 

This Fock-like or Hiickel-like matrix defined in the basis of 
the NAMOs has been diagonalized, providing two occupied MOs 
ag and biu. From them, a density matrix is recalculated in the 
NAMO basis, which in turn provides orbital populations and bond 
orders. These happen to be very close to the exact CASSCF 
values, as exemplified for three typical parameters: 

<7h 

one-electron 
0.87 
0.66 
0.57 

CASSCF 
0.86 
0.65 
0.56 

This emphasizes the consistency in our analysis of the physics of 
the electronic interactions in the bridge. The relative influence 
of the various through-space interactions may be further explored 
by putting to zero some of the off-diagonal elements of this 
Huckel-type matrix. The suppression of all interactions between 
the two bridges only results in a weak perturbation of the electronic 
populations (<?h = 0.85, Pb,h = 0.70, Pb |b ! = 0.57). On the other 
hand, the cancellation of the interactions between the boron hy­
brids of the same bridge results in a significant increase of the 
electronic population on hydrogen (qh = 1.03), while little affecting 
Pblii (0.66) and expectedly reducing Pbtbl (0.48). This numerical 
experiment illustrates how the electronic populations are sensitive 
to the through-space interactions within a bridge. Although some 
interbridge interactions have the same amplitudes, they have a 
lesser influence on the electronic population. 

VI. Stability toward Basis Sets 
The above analysis rests on the definition of some sort of 

molecularly adapted minimal basis set, provided by the CASSCF 
calculation and redefined in terms of nearly atomic orbitals. This 
description is only effective if it proves to be stable under basis 
set changes. It is well experienced that the CASSCF energy and 
wave function are weakly sensitive to basis set extension beyond, 
say, the double-f-plus-polarization level. The stability of the 
NAMOs and of the OVB decomposition has to be measured in 
the same way. To check it, our DZP basis set has been extended 
by adding supplementary s and p orbitals on the bridging hydrogen 
atoms, which become triple-f double-polarization (see Appendix 
for the exponents). We have deliberately chosen an unbalanced 
basis set, since unbalance dramatizes the instability of Mulliken 
population analysis. Notice that if a molecule was treated in an 
almost complete basis set centered on a given atom, which is in 
principle correct, the overlap populations would vanish. 

The results are summarized in Table VI. The Mulliken analysis 
on the SCF wave functions exhibits dramatic changes in both 
diagonal and off-diagonal elements. The net charge on the 
bridging hydrogen changes its sign when going from basis set 1 
to basis set 2 (-0.10 and +0.10, respectively). The overlap 
population between B and H is divided by 2, while that between 
the two boron atoms is multiplied by 2, now being the leading 
one and suggesting larger bonding character along B-B rather 
than along B-H. 

In contrast, the CASSCF + OVB procedure displays more 
stability. The CASSCF energy gain from basis set 1 to basis set 
2 is very small (0.1 kcal/mol). The isodensity maps of the NA-
MOs are hardly discernable. The elements of the first-order 
density matrix are fairly constant. The net charge on the bridging 
hydrogen only changes from +0.14 to +0.16, while the bond orders 
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Table VI. Stabilities toward Basis Sets" 
basis set 1 

AOs-SCF Mulliken Analysis 
<?H 
''BH 
/*BB 

^HH 

1.10 
0.20 
0.08 

-0.07 

NAMOs-CASSCF Analysis 
<7h 
' 'bh 

Pbb 
*W 
CORP(b, h)» 
CORP(b, b) 
CORP(h, h') 

0.86 
0.65 
0.56 

-0.29 
10.8 
2.9 
1.4 

basis set 2 

0.90 
0.12 
0.19 

-0.12 

0.84 
0.65 
0.56 

-0.29 
10.4 
3.3 
1.4 

"The basis set 1 is the DZP basis set used throughout the work; the 
basis set 2 is TZDP on the bridging hydrogens and DZP on the re­
maining atoms. *CORP indexes in percent. 

keep unchanged. The OVB decomposition is almost identical, 
as exemplified hereafter on the weights of the four leading con­
figurations: 

* 1 
* 2 

* 3 

* 4 

basis set 1 

7.87 
6.49 
4.92 
3.61 

basis set 2 

7.79 
6.42 
5.07 
3.39 

The stability of the valence-bond decomposition can be estimated 
from a measure of the formal overlap between the coefficients 
Cu and Cn of *, in the expansions calculated with basis sets 1 
and 2, respectively: 

5 = JLCnC12 
i 

This value happens to be very close to 1 (S = 0.9998). The 
above-proposed CORP indexes, which measure the covalent bond 
character between two NAMOs, also happen to be stable. While 
the Mulliken overlap population hierarchy is affected by the basis 
set change, the CORP index produces unchanged estimates for 
the through-bond and through-space interactions. 

VII. Conclusion 

The analysis in terms of NAMOs provides a stable and efficient 
picture of the electronic population and avoids the defect of 
Mulliken population analyses. Other attempts have been for­
mulated to avoid these shortcomings. For instance, the population 
can be expressed in terms of free-atom SCF atomic orbitals, which 
keep an invariant intrinsic character.9"12 The results so-obtained 
are indeed quite stable and more meaningful than the usual ones. 
Our procedure avoids the requirement for such extra information. 
The NAMOs are orthogonal; this has both advantages and defects. 
The defects are in the tails, which distort the pure atomic character 
and may pollute the atomic charges. The advantages lie in the 
simplicity of the partitioning. The sum of the charges is the 
number of electrons, and there is no need to partition the overlap 
populations. 

Although almost basis set independent, the bond orders ex­
pressed in the basis of NAMOs do not appear as significant 
measures of the existence of bonds in such problematic con­
structions. We believe elements of the second-order density matrix 
or related two-particle quantities give a beter insight into the local 
electronic population and its fluctuation since a covalent bond 
implies electronic delocalization and ionic/neutral mixing (at least 
in an orthogonal basis). The CORP index is certainly an inter­
esting tool to study hypercoordinated systems such as metallic 
clusters and other controversial architectures where local two-
electron pairing is not straightforward. 

The present methodology defines a somewhat paradoxical 
trajectory since it starts from a rather elaborate wave function 
using nonminimal basis sets and including nondynamic correlation 
effects39 and then moves back to some kind of minimal basis set 

description. It even makes it possible to propose a simple 
Huckel-type matrix (without overlap) quantitatively schematizing 
the interactions in a given system, by using the diagonal and 
off-diagonal energies of the CAS-CI matrix, as shown in section 
V. A CNDO-type Hamiltonian might be built as well, at an 
intermediate level of complexity. The main advantage of these 
backwa*d procedures is pictorial. They suggest that simple pic­
tures are available from the elaborate calculations and that 
physical trends may be traced simply and accurately, provided 
that rigorous reduction of information is considered to be as 
important to the modern scientist as the actual production of 
rigorous information. 

The present work leads to a balanced picture of the double 
bridge in B2H6. It confirms the description in terms of a partition 
of the four electrons into two pairs. The interaction between the 
two bridges is not negligible, as exemplified by the correlation 
of the electronic up/down distributions, but it remains rather weak. 
This view is in line with the existence of singly bridged structures 
as in B2H5,

40 B2H7",4' and various other systems,35,42 or oppositely 
with the existence of triply bridged frames.2243 Regarding the 
relative BH versus BB interactions (a particular version of the 
through-bond versus through-space dilemma, especially important 
in small rings), all our evaluations are consistent. Both the analysis 
of the wave function in terms of rationnally conceived indexes, 
such as the probability of finding two electrons in a subset of 
NAMOs or its fraction of covalent origin (CORP), and the relative 
amplitudes of the hopping integrals in the OVB-CI matrix, yield 
the same conclusion: The directional B-H interactions prevail 
as the leading interactions in the double bridge, but direct 
through-space B-B interactions also exist, of smaller but non-
negligible amplitude. This is not in contradiction with the 
"inwardly bent" BH bonds related to the inwardly curved bond 
paths, obtained in the study of the Laplacian of the charge den­
sity.16 In some sense, referring to the two limiting models of the 
two-electron three-center problem, i.e., the allyl cation and the 
cyclopropenyl cation or H3

+ cluster, one may say that diborane 
is halfway between the two extremes. However, the through-
bond/through-space proportion has no reason to be constant in 
isoelectronic doubly bridged structures. The occurrence of a 
dominant X-X bond between the two heavy atoms remains, in 
principle, possible for some of them. In a following paper, the 
above analysis is applied to a broad series of electron-deficient 
bridges, disclosing systematic trends and illustrating the inter­
pretative power of the methodology. 
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Appendix 

1. CASSCF Calculations. The SCF step is performed with 
the PSHONDO program,44 which introduces nonempirical effective 
core potentials45 in the HONDO program.46 Double-f plus po­
larization (DZP) basis sets are used. The exponent for the d 
function on boron is taken at 0.60, the exponent for the p function 
on hydrogen is taken at 0.80. The geometry taken for B2H6 is 
that obtained from SCF optimization, within Du symmetry, using 

(39) Dynamical correlation effects might be included as well by dressing 
the CAS-CI matrix, as done in ref 34c. 

(40) Curtiss, L. A.; Pople, J. A. J. Chem. Phys. 1989, 91, 4189. 
(41) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Per-

gamon Press: Oxford, 1984; p 171. 
(42) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio 

Molecular Orbital Theory; John Wiley and Sons: New York, 1986; p 378. 
(43) (a) Lammertsma, K.; Leszczynski, J. /. Phys. Chem. 1990, 94, 5543. 

(b) Colegrove, B. T.; Schaefer, H. F. J. Chem. Phys. 1990, 93, 7230. 
(44) PSlissier, M.; Komiha, N.; Daudey, J. P. J. Comput. Chem. 1988, 9, 

298. 
(45) Durand, Ph.; Barthelat, J. C. Theor. Chim. Acta 1975, SS, 283. 
(46) Dupuis, M.; King, H. F. /. Chem. Phys. 1978, 68, 3998. 
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the gradient version of the program. Such geometry corresponds 
to B-Hb = 1.327 A, B-H, = 1.195 A., B-B = 1.791 A, HbBHb 
= 95.1°, H1BH, = 122.3°, which is close to the gas-phase structure 
of diborane (B-Hb = 1.320 A, B-H1 = 1.201 A, B-B = 1.763 
A, HbBHb = 96.2°, H1BH1 = 121.00).47 In section VI, a com­
parative study of the CASSCF + OVB procedure is performed 
with a basis set that is enriched on Hb. Only on these two atoms, 
a diffuse s function is added with exponent 0.03, while the p 
function is splitted into two parts, with exponents 1.12 and 0.20. 
This basis set is therefore triple- f s and double-f p on Hb. The 
geometry considered in that part is not reoptimized and is therefore 
the DZP one, which permits a better comparison. 

The MCSCF step is performed with the program described in 
ref 48. The complete active space related to the double bridge 
involves six orbitals (ag, blu, b2g, b3u, ag, blu) and four electrons. 
This generates 33 singlet configurations. The MCSCF procedure 
brings a valence correlation energy of 29.8 kcal/mol. The main 
coefficients of the multiconfigurational wave function are as 
follows: 

i> = 0.99|agbfu| - 0.12|agb,ub2gb3u| - 0.08|agbluagb,u| -
0.07|aJbJ,| - 0.06|a|bluag| - 0.05|b?ua|| - 0.05|agb?ub3u| -

0.04|a|blublu| + ... 

2. Random Distributions, a. Pure Random. The problem 
reduces to a set of six equal boxes (the NAMOs), to be filled with 
four balls (the electrons). The four balls decompose into two white 
balls (spin a) and two red balls (spin #), and each box can contain 
only one ball or two balls of different colors (exclusion principle). 
The total number of possibilities for the distribution of these four 
balls into the six boxes is given by C2

6C
2

6 = 225 (total number of 
determinants). Each elemental probability of Table I, referring 
to a given space part, is the simple ratio of the number of favorable 
cases over the number of possible cases. The determinants cor­
responding to four singly filled boxes (*i, ^2, #3, $5, $11? and 
*,5) have a probability of Cj/225 = 2.67%. The determinants 
corresponding to two doubly filled boxes (*7, >i>12, $15, *2o> *25> 
and *27) have a probability of 1/225 = 0.44%. The remaining 
determinants, corresponding to one doubly filled box and two singly 
filled boxes have a probability of C2/225 = 0.89%. Note that the 
number of favorable cases is nothing else than the spin degeneracy 
given by the ratio N/S in Table I. 

b. Weighted Random. This corresponds to a set of six boxes 
of different sizes, four small ones (b NAMOs, of mean population 
0.57) and two large ones (h NAMOs, of mean population 0.86). 
The preceding reasoning must be refined by assigning a probability 
to the occupation of each type of boxes. Let us call ps and p\ the 
probabilities associated to the small boxes and large boxes, re­
spectively. The elemental probabilities of Table I are now 
multiples of the different termsp*, ps

3/j,, p2p\2,pj>?, andp*. ps 
and px can be fitted numerically, so as to reproduce the mean 
charges on each NAMO qb and <7h. Each termp*'nP\n can also 
be straightly evaluated from its analytical expression in function 
of one orbital charge: 

Ps4'nPin = 
(a 2 + 8 a + 6)2 

4 ( < ? h - l ) + ( 1 0 9 h
2 - 2 0 < ? h + 16)'/2 

a = 
2 -<?h 

The general treatment of such problem is addressed in ref 49. 
3. Probabilities within Given Subsets. The probability of finding 

a given number of electrons in a given subset of NAMOs is 

(47) Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, 
R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. O. J. Phys. 
Chem. Ref. Data 1979, 8, 619. 

(48) Carbo, R.; Domingo, L.; Peris, J. J. Adv. Quantum Chem. 1982, 15, 
215. 

(49) Karafiloglou, P. Chem. Phys. 1990, 140, 373. 

obtained by summing all the contributions p, (given in Table I) 
of the configurations that satisfy such occupation in the given 
subset, with properly taking into account relevant space degen­
eracies. Some examples are explicited in the following. 

FfI = 2p3 + p5 + p6 + 2p8 + Ip9 + 4p10 + 2p12 + 2p,4 + 
2p15 + 2p17 + 2p,8 + 2p„ + 2p20 + 2p21 + P22 + 4p23 + 

2p24 + 2p25 + 4p26 + 2p27 + 2p28 

^ = Pl + P2 + 3p3 + Pi + Pi + Pb + Pt + Ps + 2pio + 
PlI + Pl3 + 3Pl4 + 2Pl7 + 2 p U + Pl9 + P21 + PlI + 2p23 + 

P24 + 2p26 + P28 

^ ! h = Pi + P2 + P3 + 3p4 + p6 + P1 + 2p8 + 2p9 + P10 + 

Pu + 3p,2 + Pi3 + 2p,4 + p , 5 + P17 + p1 8 + P20 + P23 + 

P24 + P25 + P26 + P27 + P M 

^,Vb2 = 2p, + 2p2 + 4p3+ 4p4 + P5 + 2p6 + P1 + 4p8 + 
4p9 + 4p10 + 4p12 + 2p15 + 2p20 

For the pure random distribution, this procedure can be applied 
by using, of course, the coefficients given in the last column of 
Table I. In this case, however, such probabilities can be expressed 
straightforwardly, from simple counting considerations. The 
preceding examples can thus be written as 

/f> = - I J = 44.4% 

2C5Cl. 
Jf> = -J-J- = 44.4% 

c\c\ 
2Cl + C\C\C\C\ 

P)2) = JJ = 33.8% v CiCl 

m -2CjCj + C3C3C3C3 

ClCl 
= 44.1 

The orbital populations given by the first-order density matrix 
(qb = 0.57, qh = 0.86) can also be obtained from the probabilities 
associated to the various occupations of the given orbital: 

<?,• = hw 
J-O 

For the analysis that uses the NAMOs respecting the fragment 
symmetry, 5, the same kind of treatment is applied on an 
equivalent distribution of 30 space-part configurations. The 
population on each atom is of course unchanged, but the total 
population on each boron atom (1.14 e") now decomposes into 
q„ = 0.72 and qp = 0.42. 

The OVB decomposition step is not compulsory to obtain the 
bielectronic probabilities. These may receive an operatorial 
definition using creation and annihilation operators. As an ex­
ample, the probability of finding two electrons in a set \i,j) is given 
by 

Pjj) = <*|py +Plf + rlfW) 

P\j = (atafljaf + afapiatKafajajaf + afaptf) 

Pj? = (aWoflMaftriay) 

Such four-body operators have been used in ref 49. Of course, 
their mean values can be calculated on the Hartree-Fock wave 
function as well as on the CASSCF one or on more sophisticated 
ones incorporating the dynamical correlation effects. Note 
however that this formulation requires orthogonal monoelectronic 
functions. It would be difficult to define such quantitites with 
nonorthogonal (purely atomic or GVB) orbitals. The advantage 
of using orthogonal sets is the possibility of defining disjoint events 
and of thinking in terms of probabilities. 


